

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF HUMAN NUTRITION					
BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES					
BACHELOR OF HEALTH INFORMATION SYSTEMS MANAGEMENT					
BACHELOR OF MEDICAL LABORATORY SCIENCES					
QUALIFICATION CODE: 08BOHN, 08BOHS, 07BHIS, 08BBMS	LEVEL: 5				
COURSE CODE: HSP511S	COURSE NAME: HEALTH SCIENCE PHYSICS				
SESSION: JULY 2023	PAPER: THEORY				
DURATION: 3 HOURS	MARKS: 100				

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATIONS PAPER		
EXAMINER(S)	DR VAINO INDONGO	
MODERATOR:	PROF DIPTI SAHU	

INSTRUCTIONS:

- 1. Answer all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work MUST be in blue or black ink and sketches/diagrams be in pencils.

PERMISSIBLE MATERIALS

Non-Programmable Calculator

THIS PAPER CONSISTS OF 7 PAGES (INCLUDING THIS FRONT PAGE)

SE	ECTION A	[40]
QUESTION 1 Multiple choice questions types: Each question carries two marks		
1.	Dimensional analysis is a method used to	(2)
2.	is a unit of force? A. kg.m/s² B. kg C. m/s D. cm³	(2)
3.	Which of the following physical quantity is dimensionless? A. Momentum B. Strain C. Stress D. Force	(2)
4.	The dimensional formula of momentum is A. MLT B. MLT ⁻¹ C. M°L°T ⁻¹ D. M ⁻¹ LT ⁻¹	(2)
5.	The dimensions of WORK are; A. MLT B. ML ² T ⁻² C. MLT ⁻² D. ML ² T ⁻¹	(2)
6.	The rate of change of displacement of a particle is referred to as A. speed B. velocity C. acceleration D. power	(2)

7.	 7. The difference between speed and velocity is: A. speed has no units B. they use different units to represent their magnitude C. speed shows only magnitude, while velocity represents both magnitude (strength) and direction D. velocity has a higher magnitude 				
8.	If vector a = 5i and b = -8j . The scalar product is	(2)			
9.	Which of the following is not true? A. velocity can be negative B. velocity is a vector C. speed is a scalar D. speed can be negative	(2)			
10	 10. The forces of 20 N towards north and 12 N towards south are acting on an object. What will be resultant force? A. 32 N toward north B. 20 N towards north C. 32 N towards south D. 8 N towards north 				
11	11. A toy car moves 8 m in 4 s at the constant velocity. What is the car's velocity?				
	A. 1 m/s B. 2 m/s C. 3 m/s D. 4 m/s				
12	.A train moves at a constant velocity of 50 km/h. How far will it move in 0.5 h? A. 10 km B. 20 km C. 25 km D. 50 km	(2)			
13. A boat can move at a constant velocity of 8 km/h in still water. How long will it					
	take for the boat to move 24 km?	(2)			
	A. 2 h B. 3 h C. 4 h D. 6 h				
14	The property of water whereby molecules tend to stick to one another is;	(2)			

USE THE GRAP BELOW TO ANSWER QUESTION 15 AND 16

The graph represents the relationship between velocity and time for an object moving in a straight line. Use this graph to answer questions 14 and 15

15. Which of the following statements is true?

(2)

- A. The object speeds up
- B. The object moves with a constant velocity
- C. The object stays at rest
- D. The object is in free fall
- 16. What is the acceleration of the object after 5 s?

(2)

- A. 0 m/s^2
- B. 3 m/s
- C. 4 m/s²
- D. 5 m/s²
- 17. A projectile is fired at an angle of 60.0° above the horizontal with an initial speed of 30.0 m/s. How long does it take the projectile to reach the highest point in its trajectory? (2)

A. 1.5 s

- B. 2.7 s
- C. 6.2 s
- D. 9.8 s
- 18. What is the force of gravity that is exerted on earth by the sun? Given That the mass of the sun and the earth are 1.99×10^{30} kg and 5.97×10^{24} kg respectively. The distance between the sun and the earth is 1.496×10^{-11} m and G is 6.67×10^{-11} N.m²/kg². (2)

A. $3.54 \times 10^{22} \text{N}$

B. $4.54 \times 10^{21} \text{N}$

C. $3.45 \times 10^{22} N$

D. 4.54 x 10²²N

19. Water is flowing in a fire horse with a velocity of 1.0 m/s and a pressure of 200 000 Pa. At the nozzle the pressure decreases to atmospheric pressure (101 300 Pa), there is no change in height. The density of water is 1000 kg/m³ and gravity g is 9.8 m/s². Using Bernoulli's principle, the velocity of the water exiting the nozzle. (2)

A. 12 m/s

B. 14 m/s²

(2)

C. 13.5 m/s

D. 14m/s

- 20. Which of the following statement is **incorrect** about Newton Laws.
 - A. Newton's first law is sometimes known as the law of inertia
 - B. Newton's second law is states that the force is equal to the mass multiply by the acceleration of the object.
 - Newton s second law states that the force is inversely proportion to acceleration of the object
 - D. None of the above

SECTION B			[60]
QUESTION 2			(20)
2.1	2.1 Derive the dimensions of:		
	(i) (ii)	pressure surface tension	(2) (2)
2.2	2.2 Use dimensionally analysis to prove whether kinetic energy is equals to gravitational potential energy.		
2.3	2.3 The force F of the wind on the moving car is certainly affected by its velocity v of the car, density ρ and the surface area A of the car directly exposed to the wind's direction. Use dimensional analysis to show the		
		tion of force.	(8)
2.4	Suppo	ose A = B^mC^n , where A has dimension, LT ³ , B has dimension L ² T ⁻¹ ,	
	and	C has dimensions LT ² . Determine the m and n values.	(5)
QUESTION 3		(20)	
3.1	Giv	ven three vectors;	
	a	= i + 2j +3k,	
b = 2i + 3j + k			
c = 7i + 2j + k			
	(i) (ii)	Evaluate vector \mathbf{p} , such that $\mathbf{p} = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$ From (i), find a unit vector \mathbf{n} in the direction of \mathbf{p} .	(8) (2)
3.2	The p	osition \bar{r} of a particle was given by 4.0 t^4 \dot{i} - 2.0 t^2 \dot{j} + 2.0 t^2 \dot{k} . m	
(with t in seconds). Determine;			
	(i)	vector \bar{u} such that $1/2$ $\bar{r} = \bar{u}$.	(3)
	(ii) the velocity of the particle at t = 0.5 s.		
	(iii) the rate of change of velocity of a particle.		

QUESTION 4 (20)

- 4.1 An object is projected from a height of 100 m above the ground at an angle of 30° to the horizontal with a velocity of 100 m/s.Calculate;
 - (i) Maximum height (H) reached by the object. (3)
 - (ii) the distance the object travels from the cliff (2)
- 4.2 Two blocks of mass 0.1 kg and 0.2 kg approach each other on a horizontal plane at velocities of 0.4 and 1m/s respectively. If the blocks collide and remain together, calculate the joint velocity after collision. (5)
- 4.3 An object of mass m is attached to a spring of length L. If the spring is extended by a distance e and released, show that the period of oscillation is given by; $T = 2\pi \sqrt{\frac{e}{g}}$, where g is the acceleration due to gravity. (3)
- 4.4 State any two assumptions considered in studying fluid dynamics. (2)
- 4.5 When 620 g of water was cooled down from 92.2°C to 4.5°C and the specific heat capacity, c, of water is 4186 J. kg⁻¹C⁻¹. Determine the:
 - (i) amount of heat transferred in Kilo Joules (3)
 - (ii) initial temperature of water in Fahrenheit (1)
 - (iii) final temperature of water in Kelvin (1)

END OF EXAM